Metamath Proof Explorer


Theorem recvs

Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)

Ref Expression
Hypothesis recvs.r R = ringLMod fld
Assertion recvs R ℂVec

Proof

Step Hyp Ref Expression
1 recvs.r R = ringLMod fld
2 refld fld Field
3 fldidom fld Field fld IDomn
4 isidom fld IDomn fld CRing fld Domn
5 crngring fld CRing fld Ring
6 5 adantr fld CRing fld Domn fld Ring
7 4 6 sylbi fld IDomn fld Ring
8 3 7 syl fld Field fld Ring
9 2 8 ax-mp fld Ring
10 rlmlmod fld Ring ringLMod fld LMod
11 9 10 ax-mp ringLMod fld LMod
12 rlmsca fld Field fld = Scalar ringLMod fld
13 2 12 ax-mp fld = Scalar ringLMod fld
14 df-refld fld = fld 𝑠
15 13 14 eqtr3i Scalar ringLMod fld = fld 𝑠
16 resubdrg SubRing fld fld DivRing
17 16 simpli SubRing fld
18 eqid Scalar ringLMod fld = Scalar ringLMod fld
19 18 isclmi ringLMod fld LMod Scalar ringLMod fld = fld 𝑠 SubRing fld ringLMod fld CMod
20 11 15 17 19 mp3an ringLMod fld CMod
21 16 simpri fld DivRing
22 rlmlvec fld DivRing ringLMod fld LVec
23 21 22 ax-mp ringLMod fld LVec
24 20 23 elini ringLMod fld CMod LVec
25 df-cvs ℂVec = CMod LVec
26 24 1 25 3eltr4i R ℂVec