Metamath Proof Explorer


Theorem recxpcld

Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φ A
recxpcld.2 φ 0 A
recxpcld.3 φ B
Assertion recxpcld φ A B

Proof

Step Hyp Ref Expression
1 recxpcld.1 φ A
2 recxpcld.2 φ 0 A
3 recxpcld.3 φ B
4 recxpcl A 0 A B A B
5 1 2 3 4 syl3anc φ A B