Metamath Proof Explorer


Theorem recxpf1lem

Description: Complex exponentiation on positive real numbers is a one-to-one function. (Contributed by Thierry Arnoux, 1-Apr-2025)

Ref Expression
Hypotheses recxpf1.1 φ A
recxpf1.2 φ 0 A
recxpf1.3 φ B
recxpf1.4 φ 0 B
recxpf1.5 φ C +
Assertion recxpf1lem φ A = B A C = B C

Proof

Step Hyp Ref Expression
1 recxpf1.1 φ A
2 recxpf1.2 φ 0 A
3 recxpf1.3 φ B
4 recxpf1.4 φ 0 B
5 recxpf1.5 φ C +
6 1 2 3 4 5 cxple2d φ A B A C B C
7 3 4 1 2 5 cxple2d φ B A B C A C
8 6 7 anbi12d φ A B B A A C B C B C A C
9 1 3 letri3d φ A = B A B B A
10 5 rpred φ C
11 1 2 10 recxpcld φ A C
12 3 4 10 recxpcld φ B C
13 11 12 letri3d φ A C = B C A C B C B C A C
14 8 9 13 3bitr4d φ A = B A C = B C