Metamath Proof Explorer


Theorem rediv

Description: Real part of a division. Related to remul2 . (Contributed by David A. Wheeler, 10-Jun-2015)

Ref Expression
Assertion rediv A B B 0 A B = A B

Proof

Step Hyp Ref Expression
1 ancom B B 0 A A B B 0
2 3anass A B B 0 A B B 0
3 1 2 bitr4i B B 0 A A B B 0
4 rereccl B B 0 1 B
5 4 anim1i B B 0 A 1 B A
6 3 5 sylbir A B B 0 1 B A
7 remul2 1 B A 1 B A = 1 B A
8 6 7 syl A B B 0 1 B A = 1 B A
9 recn B B
10 divrec2 A B B 0 A B = 1 B A
11 10 fveq2d A B B 0 A B = 1 B A
12 9 11 syl3an2 A B B 0 A B = 1 B A
13 recl A A
14 13 recnd A A
15 14 3ad2ant1 A B B 0 A
16 9 3ad2ant2 A B B 0 B
17 simp3 A B B 0 B 0
18 15 16 17 divrec2d A B B 0 A B = 1 B A
19 8 12 18 3eqtr4d A B B 0 A B = A B