Metamath Proof Explorer


Theorem redivcld

Description: Closure law for division of reals. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses redivcld.1 φ A
redivcld.2 φ B
redivcld.3 φ B 0
Assertion redivcld φ A B

Proof

Step Hyp Ref Expression
1 redivcld.1 φ A
2 redivcld.2 φ B
3 redivcld.3 φ B 0
4 redivcl A B B 0 A B
5 1 2 3 4 syl3anc φ A B