Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
redivclzi
Next ⟩
redivcli
Metamath Proof Explorer
Ascii
Unicode
Theorem
redivclzi
Description:
Closure law for division of reals.
(Contributed by
NM
, 9-May-1999)
Ref
Expression
Hypotheses
redivcl.1
⊢
A
∈
ℝ
redivcl.2
⊢
B
∈
ℝ
Assertion
redivclzi
⊢
B
≠
0
→
A
B
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
redivcl.1
⊢
A
∈
ℝ
2
redivcl.2
⊢
B
∈
ℝ
3
redivcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
B
≠
0
→
A
B
∈
ℝ
4
1
2
3
mp3an12
⊢
B
≠
0
→
A
B
∈
ℝ