Metamath Proof Explorer


Theorem redivd

Description: Real part of a division. Related to remul2 . (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses crred.1 φ A
remul2d.2 φ B
redivd.2 φ A 0
Assertion redivd φ B A = B A

Proof

Step Hyp Ref Expression
1 crred.1 φ A
2 remul2d.2 φ B
3 redivd.2 φ A 0
4 rediv B A A 0 B A = B A
5 2 1 3 4 syl3anc φ B A = B A