Metamath Proof Explorer


Theorem redvr

Description: The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion redvr A B B 0 A / r fld B = A B

Proof

Step Hyp Ref Expression
1 resubdrg SubRing fld fld DivRing
2 1 simpli SubRing fld
3 simp1 A B B 0 A
4 3simpc A B B 0 B B 0
5 1 simpri fld DivRing
6 rebase = Base fld
7 eqid Unit fld = Unit fld
8 re0g 0 = 0 fld
9 6 7 8 drngunit fld DivRing B Unit fld B B 0
10 5 9 ax-mp B Unit fld B B 0
11 4 10 sylibr A B B 0 B Unit fld
12 df-refld fld = fld 𝑠
13 cnflddiv ÷ = / r fld
14 eqid / r fld = / r fld
15 12 13 7 14 subrgdv SubRing fld A B Unit fld A B = A / r fld B
16 2 3 11 15 mp3an2i A B B 0 A B = A / r fld B
17 16 eqcomd A B B 0 A / r fld B = A B