Metamath Proof Explorer


Theorem redwlklem

Description: Lemma for redwlk . (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 29-Jan-2021)

Ref Expression
Assertion redwlklem F Word S 1 F P : 0 F V P 0 ..^ F : 0 F 0 ..^ F 1 V

Proof

Step Hyp Ref Expression
1 simpr F Word S 1 F P : 0 F V P : 0 F V
2 fzossfz 0 ..^ F 0 F
3 fssres P : 0 F V 0 ..^ F 0 F P 0 ..^ F : 0 ..^ F V
4 1 2 3 sylancl F Word S 1 F P : 0 F V P 0 ..^ F : 0 ..^ F V
5 4 ex F Word S 1 F P : 0 F V P 0 ..^ F : 0 ..^ F V
6 lencl F Word S F 0
7 6 nn0zd F Word S F
8 fzoval F 0 ..^ F = 0 F 1
9 7 8 syl F Word S 0 ..^ F = 0 F 1
10 9 adantr F Word S 1 F 0 ..^ F = 0 F 1
11 wrdred1hash F Word S 1 F F 0 ..^ F 1 = F 1
12 oveq2 F 0 ..^ F 1 = F 1 0 F 0 ..^ F 1 = 0 F 1
13 12 eqeq2d F 0 ..^ F 1 = F 1 0 ..^ F = 0 F 0 ..^ F 1 0 ..^ F = 0 F 1
14 11 13 syl F Word S 1 F 0 ..^ F = 0 F 0 ..^ F 1 0 ..^ F = 0 F 1
15 10 14 mpbird F Word S 1 F 0 ..^ F = 0 F 0 ..^ F 1
16 15 feq2d F Word S 1 F P 0 ..^ F : 0 ..^ F V P 0 ..^ F : 0 F 0 ..^ F 1 V
17 5 16 sylibd F Word S 1 F P : 0 F V P 0 ..^ F : 0 F 0 ..^ F 1 V
18 17 3impia F Word S 1 F P : 0 F V P 0 ..^ F : 0 F 0 ..^ F 1 V