Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
reean
Metamath Proof Explorer
Description: Rearrange restricted existential quantifiers. For a version based on
fewer axioms see reeanv . (Contributed by NM , 27-Oct-2010) (Proof
shortened by Andrew Salmon , 30-May-2011)
Ref
Expression
Hypotheses
reean.1
⊢ Ⅎ y φ
reean.2
⊢ Ⅎ x ψ
Assertion
reean
⊢ ∃ x ∈ A ∃ y ∈ B φ ∧ ψ ↔ ∃ x ∈ A φ ∧ ∃ y ∈ B ψ
Proof
Step
Hyp
Ref
Expression
1
reean.1
⊢ Ⅎ y φ
2
reean.2
⊢ Ⅎ x ψ
3
nfv
⊢ Ⅎ y x ∈ A
4
3 1
nfan
⊢ Ⅎ y x ∈ A ∧ φ
5
nfv
⊢ Ⅎ x y ∈ B
6
5 2
nfan
⊢ Ⅎ x y ∈ B ∧ ψ
7
4 6
eean
⊢ ∃ x ∃ y x ∈ A ∧ φ ∧ y ∈ B ∧ ψ ↔ ∃ x x ∈ A ∧ φ ∧ ∃ y y ∈ B ∧ ψ
8
7
reeanlem
⊢ ∃ x ∈ A ∃ y ∈ B φ ∧ ψ ↔ ∃ x ∈ A φ ∧ ∃ y ∈ B ψ