Metamath Proof Explorer


Theorem reean

Description: Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Hypotheses reean.1 y φ
reean.2 x ψ
Assertion reean x A y B φ ψ x A φ y B ψ

Proof

Step Hyp Ref Expression
1 reean.1 y φ
2 reean.2 x ψ
3 nfv y x A
4 3 1 nfan y x A φ
5 nfv x y B
6 5 2 nfan x y B ψ
7 4 6 eean x y x A φ y B ψ x x A φ y y B ψ
8 7 reeanlem x A y B φ ψ x A φ y B ψ