Metamath Proof Explorer
Description: Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)
|
|
Ref |
Expression |
|
Hypotheses |
reean.1 |
|
|
|
reean.2 |
|
|
Assertion |
reean |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reean.1 |
|
2 |
|
reean.2 |
|
3 |
|
nfv |
|
4 |
3 1
|
nfan |
|
5 |
|
nfv |
|
6 |
5 2
|
nfan |
|
7 |
4 6
|
eean |
|
8 |
7
|
reeanlem |
|