Metamath Proof Explorer


Theorem reefcl

Description: The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion reefcl A e A

Proof

Step Hyp Ref Expression
1 recn A A
2 efval A e A = k 0 A k k !
3 1 2 syl A e A = k 0 A k k !
4 nn0uz 0 = 0
5 0zd A 0
6 eqid n 0 A n n ! = n 0 A n n !
7 6 eftval k 0 n 0 A n n ! k = A k k !
8 7 adantl A k 0 n 0 A n n ! k = A k k !
9 reeftcl A k 0 A k k !
10 6 efcllem A seq 0 + n 0 A n n ! dom
11 1 10 syl A seq 0 + n 0 A n n ! dom
12 4 5 8 9 11 isumrecl A k 0 A k k !
13 3 12 eqeltrd A e A