Metamath Proof Explorer


Theorem reeff1

Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion reeff1 exp : 1-1 +

Proof

Step Hyp Ref Expression
1 eff exp :
2 ffn exp : exp Fn
3 1 2 ax-mp exp Fn
4 ax-resscn
5 fnssres exp Fn exp Fn
6 3 4 5 mp2an exp Fn
7 fvres x exp x = e x
8 rpefcl x e x +
9 7 8 eqeltrd x exp x +
10 9 rgen x exp x +
11 ffnfv exp : + exp Fn x exp x +
12 6 10 11 mpbir2an exp : +
13 fvres y exp y = e y
14 7 13 eqeqan12d x y exp x = exp y e x = e y
15 reef11 x y e x = e y x = y
16 15 biimpd x y e x = e y x = y
17 14 16 sylbid x y exp x = exp y x = y
18 17 rgen2 x y exp x = exp y x = y
19 dff13 exp : 1-1 + exp : + x y exp x = exp y x = y
20 12 18 19 mpbir2an exp : 1-1 +