Step |
Hyp |
Ref |
Expression |
1 |
|
reeff1 |
|
2 |
|
f1f |
|
3 |
|
ffn |
|
4 |
1 2 3
|
mp2b |
|
5 |
|
frn |
|
6 |
1 2 5
|
mp2b |
|
7 |
|
elrp |
|
8 |
|
reclt1 |
|
9 |
7 8
|
sylbi |
|
10 |
|
rpre |
|
11 |
|
rpne0 |
|
12 |
10 11
|
rereccld |
|
13 |
|
reeff1olem |
|
14 |
12 13
|
sylan |
|
15 |
|
eqcom |
|
16 |
|
rpcnne0 |
|
17 |
|
recn |
|
18 |
|
efcl |
|
19 |
17 18
|
syl |
|
20 |
|
efne0 |
|
21 |
17 20
|
syl |
|
22 |
19 21
|
jca |
|
23 |
|
rec11r |
|
24 |
16 22 23
|
syl2an |
|
25 |
|
efcan |
|
26 |
25
|
eqcomd |
|
27 |
|
negcl |
|
28 |
|
efcl |
|
29 |
27 28
|
syl |
|
30 |
|
ax-1cn |
|
31 |
|
divmul2 |
|
32 |
30 31
|
mp3an1 |
|
33 |
29 18 20 32
|
syl12anc |
|
34 |
26 33
|
mpbird |
|
35 |
17 34
|
syl |
|
36 |
35
|
eqeq1d |
|
37 |
36
|
adantl |
|
38 |
24 37
|
bitrd |
|
39 |
15 38
|
bitr3id |
|
40 |
39
|
biimpd |
|
41 |
40
|
reximdva |
|
42 |
41
|
adantr |
|
43 |
14 42
|
mpd |
|
44 |
|
renegcl |
|
45 |
|
infm3lem |
|
46 |
|
fveqeq2 |
|
47 |
44 45 46
|
rexxfr |
|
48 |
43 47
|
sylibr |
|
49 |
48
|
ex |
|
50 |
9 49
|
sylbid |
|
51 |
50
|
imp |
|
52 |
|
ef0 |
|
53 |
52
|
eqeq2i |
|
54 |
|
0re |
|
55 |
|
fveqeq2 |
|
56 |
55
|
rspcev |
|
57 |
54 56
|
mpan |
|
58 |
57
|
eqcoms |
|
59 |
53 58
|
sylbir |
|
60 |
59
|
adantl |
|
61 |
|
reeff1olem |
|
62 |
10 61
|
sylan |
|
63 |
|
1re |
|
64 |
|
lttri4 |
|
65 |
10 63 64
|
sylancl |
|
66 |
51 60 62 65
|
mpjao3dan |
|
67 |
|
fvres |
|
68 |
67
|
eqeq1d |
|
69 |
68
|
rexbiia |
|
70 |
66 69
|
sylibr |
|
71 |
|
fvelrnb |
|
72 |
4 71
|
ax-mp |
|
73 |
70 72
|
sylibr |
|
74 |
73
|
ssriv |
|
75 |
6 74
|
eqssi |
|
76 |
|
df-fo |
|
77 |
4 75 76
|
mpbir2an |
|
78 |
|
df-f1o |
|
79 |
1 77 78
|
mpbir2an |
|