Metamath Proof Explorer


Theorem reeff1olem

Description: Lemma for reeff1o . (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion reeff1olem U 1 < U x e x = U

Proof

Step Hyp Ref Expression
1 ioossicc 0 U 0 U
2 0re 0
3 iccssre 0 U 0 U
4 2 3 mpan U 0 U
5 4 adantr U 1 < U 0 U
6 1 5 sstrid U 1 < U 0 U
7 2 a1i U 1 < U 0
8 simpl U 1 < U U
9 0lt1 0 < 1
10 1re 1
11 lttr 0 1 U 0 < 1 1 < U 0 < U
12 2 10 11 mp3an12 U 0 < 1 1 < U 0 < U
13 9 12 mpani U 1 < U 0 < U
14 13 imp U 1 < U 0 < U
15 ax-resscn
16 5 15 sstrdi U 1 < U 0 U
17 efcn exp : cn
18 17 a1i U 1 < U exp : cn
19 ssel2 0 U y 0 U y
20 19 reefcld 0 U y 0 U e y
21 5 20 sylan U 1 < U y 0 U e y
22 ef0 e 0 = 1
23 simpr U 1 < U 1 < U
24 22 23 eqbrtrid U 1 < U e 0 < U
25 peano2re U U + 1
26 25 adantr U 1 < U U + 1
27 reefcl U e U
28 27 adantr U 1 < U e U
29 ltp1 U U < U + 1
30 29 adantr U 1 < U U < U + 1
31 8 recnd U 1 < U U
32 ax-1cn 1
33 addcom U 1 U + 1 = 1 + U
34 31 32 33 sylancl U 1 < U U + 1 = 1 + U
35 8 14 elrpd U 1 < U U +
36 efgt1p U + 1 + U < e U
37 35 36 syl U 1 < U 1 + U < e U
38 34 37 eqbrtrd U 1 < U U + 1 < e U
39 8 26 28 30 38 lttrd U 1 < U U < e U
40 24 39 jca U 1 < U e 0 < U U < e U
41 7 8 8 14 16 18 21 40 ivth U 1 < U x 0 U e x = U
42 ssrexv 0 U x 0 U e x = U x e x = U
43 6 41 42 sylc U 1 < U x e x = U