Metamath Proof Explorer


Theorem reefiso

Description: The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007) (Revised by Mario Carneiro, 11-Mar-2014)

Ref Expression
Assertion reefiso exp Isom < , < +

Proof

Step Hyp Ref Expression
1 reeff1o exp : 1-1 onto +
2 eflt x y x < y e x < e y
3 fvres x exp x = e x
4 fvres y exp y = e y
5 3 4 breqan12d x y exp x < exp y e x < e y
6 2 5 bitr4d x y x < y exp x < exp y
7 6 rgen2 x y x < y exp x < exp y
8 df-isom exp Isom < , < + exp : 1-1 onto + x y x < y exp x < exp y
9 1 7 8 mpbir2an exp Isom < , < +