Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
reexpcl
Next ⟩
expcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
reexpcl
Description:
Closure of exponentiation of reals.
(Contributed by
NM
, 14-Dec-2005)
Ref
Expression
Assertion
reexpcl
⊢
A
∈
ℝ
∧
N
∈
ℕ
0
→
A
N
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
ax-resscn
⊢
ℝ
⊆
ℂ
2
remulcl
⊢
x
∈
ℝ
∧
y
∈
ℝ
→
x
⁢
y
∈
ℝ
3
1re
⊢
1
∈
ℝ
4
1
2
3
expcllem
⊢
A
∈
ℝ
∧
N
∈
ℕ
0
→
A
N
∈
ℝ