Metamath Proof Explorer


Theorem reexpclz

Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 4-Jun-2014) (Revised by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion reexpclz A A 0 N A N

Proof

Step Hyp Ref Expression
1 ax-resscn
2 remulcl x y x y
3 1re 1
4 rereccl x x 0 1 x
5 1 2 3 4 expcl2lem A A 0 N A N