Metamath Proof Explorer


Theorem reexplog

Description: Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion reexplog A + N A N = e N log A

Proof

Step Hyp Ref Expression
1 relogcl A + log A
2 1 recnd A + log A
3 efexp log A N e N log A = e log A N
4 2 3 sylan A + N e N log A = e log A N
5 reeflog A + e log A = A
6 5 oveq1d A + e log A N = A N
7 6 adantr A + N e log A N = A N
8 4 7 eqtr2d A + N A N = e N log A