Metamath Proof Explorer


Theorem ref

Description: Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion ref :

Proof

Step Hyp Ref Expression
1 df-re = x x + x 2
2 reval x x = x + x 2
3 recl x x
4 2 3 eqeltrrd x x + x 2
5 1 4 fmpti :