Metamath Proof Explorer


Theorem ref5

Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 12-Dec-2023)

Ref Expression
Assertion ref5 I A × B R x A B x R x

Proof

Step Hyp Ref Expression
1 equcom y = x x = y
2 1 imbi1i y = x x R y x = y x R y
3 2 ralbii y B y = x x R y y B x = y x R y
4 breq2 y = x x R y x R x
5 4 ceqsralbv y B y = x x R y x B x R x
6 3 5 bitr3i y B x = y x R y x B x R x
7 6 ralbii x A y B x = y x R y x A x B x R x
8 idinxpss I A × B R x A y B x = y x R y
9 ralin x A B x R x x A x B x R x
10 7 8 9 3bitr4i I A × B R x A B x R x