Metamath Proof Explorer


Theorem refressn

Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive, see also refrelressn . (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion refressn A V x dom R A ran R A x R A x

Proof

Step Hyp Ref Expression
1 elin x dom R A ran R A x dom R A x ran R A
2 eldmressnALTV x V x dom R A x = A A dom R
3 2 elv x dom R A x = A A dom R
4 3 simplbi x dom R A x = A
5 4 adantr x dom R A x ran R A x = A
6 1 5 sylbi x dom R A ran R A x = A
7 6 a1i A V x dom R A ran R A x = A
8 elrnressn A V x V x ran R A A R x
9 8 elvd A V x ran R A A R x
10 9 biimpd A V x ran R A A R x
11 10 adantld A V x dom R A x ran R A A R x
12 1 11 biimtrid A V x dom R A ran R A A R x
13 4 eqcomd x dom R A A = x
14 13 breq1d x dom R A A R x x R x
15 14 adantr x dom R A x ran R A A R x x R x
16 1 15 sylbi x dom R A ran R A A R x x R x
17 12 16 mpbidi A V x dom R A ran R A x R x
18 7 17 jcad A V x dom R A ran R A x = A x R x
19 brressn x V x V x R A x x = A x R x
20 19 el2v x R A x x = A x R x
21 18 20 imbitrrdi A V x dom R A ran R A x R A x
22 21 ralrimiv A V x dom R A ran R A x R A x