Metamath Proof Explorer


Theorem refsum2cn

Description: The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses refsum2cn.1 _ x F
refsum2cn.2 _ x G
refsum2cn.3 x φ
refsum2cn.4 K = topGen ran .
refsum2cn.5 φ J TopOn X
refsum2cn.6 φ F J Cn K
refsum2cn.7 φ G J Cn K
Assertion refsum2cn φ x X F x + G x J Cn K

Proof

Step Hyp Ref Expression
1 refsum2cn.1 _ x F
2 refsum2cn.2 _ x G
3 refsum2cn.3 x φ
4 refsum2cn.4 K = topGen ran .
5 refsum2cn.5 φ J TopOn X
6 refsum2cn.6 φ F J Cn K
7 refsum2cn.7 φ G J Cn K
8 nfcv _ x 1 2
9 nfv x k = 1
10 9 1 2 nfif _ x if k = 1 F G
11 8 10 nfmpt _ x k 1 2 if k = 1 F G
12 eqid k 1 2 if k = 1 F G = k 1 2 if k = 1 F G
13 11 1 2 3 12 4 5 6 7 refsum2cnlem1 φ x X F x + G x J Cn K