Step |
Hyp |
Ref |
Expression |
1 |
|
refsumcn.1 |
|
2 |
|
refsumcn.2 |
|
3 |
|
refsumcn.3 |
|
4 |
|
refsumcn.4 |
|
5 |
|
refsumcn.5 |
|
6 |
|
eqid |
|
7 |
6
|
tgioo2 |
|
8 |
2 7
|
eqtri |
|
9 |
8
|
oveq2i |
|
10 |
5 9
|
eleqtrdi |
|
11 |
6
|
cnfldtopon |
|
12 |
11
|
a1i |
|
13 |
3
|
adantr |
|
14 |
|
retopon |
|
15 |
2 14
|
eqeltri |
|
16 |
15
|
a1i |
|
17 |
|
cnf2 |
|
18 |
13 16 5 17
|
syl3anc |
|
19 |
18
|
frnd |
|
20 |
|
ax-resscn |
|
21 |
20
|
a1i |
|
22 |
|
cnrest2 |
|
23 |
12 19 21 22
|
syl3anc |
|
24 |
10 23
|
mpbird |
|
25 |
6 3 4 24
|
fsumcnf |
|
26 |
11
|
a1i |
|
27 |
4
|
adantr |
|
28 |
|
simpll |
|
29 |
|
simpr |
|
30 |
28 29
|
jca |
|
31 |
|
simplr |
|
32 |
|
eqid |
|
33 |
32
|
fmpt |
|
34 |
18 33
|
sylibr |
|
35 |
|
rsp |
|
36 |
34 35
|
syl |
|
37 |
30 31 36
|
sylc |
|
38 |
27 37
|
fsumrecl |
|
39 |
38
|
ex |
|
40 |
1 39
|
ralrimi |
|
41 |
|
eqid |
|
42 |
41
|
fnmpt |
|
43 |
40 42
|
syl |
|
44 |
|
nfcv |
|
45 |
|
nfcv |
|
46 |
|
nfmpt1 |
|
47 |
44 45 46
|
fvelrnbf |
|
48 |
43 47
|
syl |
|
49 |
48
|
biimpa |
|
50 |
46
|
nfrn |
|
51 |
50
|
nfcri |
|
52 |
1 51
|
nfan |
|
53 |
|
nfcv |
|
54 |
53
|
nfcri |
|
55 |
|
simpr |
|
56 |
55 38
|
jca |
|
57 |
41
|
fvmpt2 |
|
58 |
56 57
|
syl |
|
59 |
58
|
3adant3 |
|
60 |
|
simp3 |
|
61 |
59 60
|
eqtr3d |
|
62 |
38
|
3adant3 |
|
63 |
61 62
|
eqeltrrd |
|
64 |
63
|
3adant1r |
|
65 |
64
|
3exp |
|
66 |
52 54 65
|
rexlimd |
|
67 |
49 66
|
mpd |
|
68 |
67
|
ex |
|
69 |
68
|
ssrdv |
|
70 |
20
|
a1i |
|
71 |
|
cnrest2 |
|
72 |
26 69 70 71
|
syl3anc |
|
73 |
25 72
|
mpbid |
|
74 |
73 9
|
eleqtrrdi |
|