Metamath Proof Explorer


Theorem refsumcn

Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses refsumcn.1 x φ
refsumcn.2 K = topGen ran .
refsumcn.3 φ J TopOn X
refsumcn.4 φ A Fin
refsumcn.5 φ k A x X B J Cn K
Assertion refsumcn φ x X k A B J Cn K

Proof

Step Hyp Ref Expression
1 refsumcn.1 x φ
2 refsumcn.2 K = topGen ran .
3 refsumcn.3 φ J TopOn X
4 refsumcn.4 φ A Fin
5 refsumcn.5 φ k A x X B J Cn K
6 eqid TopOpen fld = TopOpen fld
7 6 tgioo2 topGen ran . = TopOpen fld 𝑡
8 2 7 eqtri K = TopOpen fld 𝑡
9 8 oveq2i J Cn K = J Cn TopOpen fld 𝑡
10 5 9 eleqtrdi φ k A x X B J Cn TopOpen fld 𝑡
11 6 cnfldtopon TopOpen fld TopOn
12 11 a1i φ k A TopOpen fld TopOn
13 3 adantr φ k A J TopOn X
14 retopon topGen ran . TopOn
15 2 14 eqeltri K TopOn
16 15 a1i φ k A K TopOn
17 cnf2 J TopOn X K TopOn x X B J Cn K x X B : X
18 13 16 5 17 syl3anc φ k A x X B : X
19 18 frnd φ k A ran x X B
20 ax-resscn
21 20 a1i φ k A
22 cnrest2 TopOpen fld TopOn ran x X B x X B J Cn TopOpen fld x X B J Cn TopOpen fld 𝑡
23 12 19 21 22 syl3anc φ k A x X B J Cn TopOpen fld x X B J Cn TopOpen fld 𝑡
24 10 23 mpbird φ k A x X B J Cn TopOpen fld
25 6 3 4 24 fsumcnf φ x X k A B J Cn TopOpen fld
26 11 a1i φ TopOpen fld TopOn
27 4 adantr φ x X A Fin
28 simpll φ x X k A φ
29 simpr φ x X k A k A
30 28 29 jca φ x X k A φ k A
31 simplr φ x X k A x X
32 eqid x X B = x X B
33 32 fmpt x X B x X B : X
34 18 33 sylibr φ k A x X B
35 rsp x X B x X B
36 34 35 syl φ k A x X B
37 30 31 36 sylc φ x X k A B
38 27 37 fsumrecl φ x X k A B
39 38 ex φ x X k A B
40 1 39 ralrimi φ x X k A B
41 eqid x X k A B = x X k A B
42 41 fnmpt x X k A B x X k A B Fn X
43 40 42 syl φ x X k A B Fn X
44 nfcv _ x X
45 nfcv _ x y
46 nfmpt1 _ x x X k A B
47 44 45 46 fvelrnbf x X k A B Fn X y ran x X k A B x X x X k A B x = y
48 43 47 syl φ y ran x X k A B x X x X k A B x = y
49 48 biimpa φ y ran x X k A B x X x X k A B x = y
50 46 nfrn _ x ran x X k A B
51 50 nfcri x y ran x X k A B
52 1 51 nfan x φ y ran x X k A B
53 nfcv _ x
54 53 nfcri x y
55 simpr φ x X x X
56 55 38 jca φ x X x X k A B
57 41 fvmpt2 x X k A B x X k A B x = k A B
58 56 57 syl φ x X x X k A B x = k A B
59 58 3adant3 φ x X x X k A B x = y x X k A B x = k A B
60 simp3 φ x X x X k A B x = y x X k A B x = y
61 59 60 eqtr3d φ x X x X k A B x = y k A B = y
62 38 3adant3 φ x X x X k A B x = y k A B
63 61 62 eqeltrrd φ x X x X k A B x = y y
64 63 3adant1r φ y ran x X k A B x X x X k A B x = y y
65 64 3exp φ y ran x X k A B x X x X k A B x = y y
66 52 54 65 rexlimd φ y ran x X k A B x X x X k A B x = y y
67 49 66 mpd φ y ran x X k A B y
68 67 ex φ y ran x X k A B y
69 68 ssrdv φ ran x X k A B
70 20 a1i φ
71 cnrest2 TopOpen fld TopOn ran x X k A B x X k A B J Cn TopOpen fld x X k A B J Cn TopOpen fld 𝑡
72 26 69 70 71 syl3anc φ x X k A B J Cn TopOpen fld x X k A B J Cn TopOpen fld 𝑡
73 25 72 mpbid φ x X k A B J Cn TopOpen fld 𝑡
74 73 9 eleqtrrdi φ x X k A B J Cn K