Description: Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reghmph | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph | |
|
| 2 | n0 | |
|
| 3 | hmeocn | |
|
| 4 | 3 | adantl | |
| 5 | cntop2 | |
|
| 6 | 4 5 | syl | |
| 7 | simpll | |
|
| 8 | 4 | adantr | |
| 9 | simprl | |
|
| 10 | cnima | |
|
| 11 | 8 9 10 | syl2anc | |
| 12 | eqid | |
|
| 13 | eqid | |
|
| 14 | 12 13 | hmeof1o | |
| 15 | 14 | ad2antlr | |
| 16 | f1ocnv | |
|
| 17 | f1ofn | |
|
| 18 | 15 16 17 | 3syl | |
| 19 | elssuni | |
|
| 20 | 19 | ad2antrl | |
| 21 | simprr | |
|
| 22 | fnfvima | |
|
| 23 | 18 20 21 22 | syl3anc | |
| 24 | regsep | |
|
| 25 | 7 11 23 24 | syl3anc | |
| 26 | simpllr | |
|
| 27 | simprl | |
|
| 28 | hmeoima | |
|
| 29 | 26 27 28 | syl2anc | |
| 30 | 20 21 | sseldd | |
| 31 | 30 | adantr | |
| 32 | simprrl | |
|
| 33 | 18 | adantr | |
| 34 | elpreima | |
|
| 35 | 33 34 | syl | |
| 36 | 31 32 35 | mpbir2and | |
| 37 | imacnvcnv | |
|
| 38 | 36 37 | eleqtrdi | |
| 39 | elssuni | |
|
| 40 | 39 | ad2antrl | |
| 41 | 12 | hmeocls | |
| 42 | 26 40 41 | syl2anc | |
| 43 | simprrr | |
|
| 44 | 15 | adantr | |
| 45 | f1ofun | |
|
| 46 | 44 45 | syl | |
| 47 | 7 | adantr | |
| 48 | regtop | |
|
| 49 | 47 48 | syl | |
| 50 | 12 | clsss3 | |
| 51 | 49 40 50 | syl2anc | |
| 52 | f1odm | |
|
| 53 | 44 52 | syl | |
| 54 | 51 53 | sseqtrrd | |
| 55 | funimass3 | |
|
| 56 | 46 54 55 | syl2anc | |
| 57 | 43 56 | mpbird | |
| 58 | 42 57 | eqsstrd | |
| 59 | eleq2 | |
|
| 60 | fveq2 | |
|
| 61 | 60 | sseq1d | |
| 62 | 59 61 | anbi12d | |
| 63 | 62 | rspcev | |
| 64 | 29 38 58 63 | syl12anc | |
| 65 | 25 64 | rexlimddv | |
| 66 | 65 | ralrimivva | |
| 67 | isreg | |
|
| 68 | 6 66 67 | sylanbrc | |
| 69 | 68 | expcom | |
| 70 | 69 | exlimiv | |
| 71 | 2 70 | sylbi | |
| 72 | 1 71 | sylbi | |