Metamath Proof Explorer


Theorem reglogcl

Description: General logarithm is a real number. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbcl instead.

Ref Expression
Assertion reglogcl A + B + B 1 log A log B

Proof

Step Hyp Ref Expression
1 relogcl A + log A
2 1 3ad2ant1 A + B + B 1 log A
3 relogcl B + log B
4 3 3ad2ant2 A + B + B 1 log B
5 logne0 B + B 1 log B 0
6 5 3adant1 A + B + B 1 log B 0
7 2 4 6 redivcld A + B + B 1 log A log B