Metamath Proof Explorer


Theorem reglogexp

Description: Power law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbzexp instead.

Ref Expression
Assertion reglogexp A + N C + C 1 log A N log C = N log A log C

Proof

Step Hyp Ref Expression
1 relogexp A + N log A N = N log A
2 1 3adant3 A + N C + C 1 log A N = N log A
3 2 oveq1d A + N C + C 1 log A N log C = N log A log C
4 zcn N N
5 4 3ad2ant2 A + N C + C 1 N
6 relogcl A + log A
7 6 recnd A + log A
8 7 3ad2ant1 A + N C + C 1 log A
9 relogcl C + log C
10 9 recnd C + log C
11 10 adantr C + C 1 log C
12 11 3ad2ant3 A + N C + C 1 log C
13 logne0 C + C 1 log C 0
14 13 3ad2ant3 A + N C + C 1 log C 0
15 5 8 12 14 divassd A + N C + C 1 N log A log C = N log A log C
16 3 15 eqtrd A + N C + C 1 log A N log C = N log A log C