Metamath Proof Explorer


Theorem reglogexpbas

Description: General log of a power of the base is the exponent. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbexp instead.

Ref Expression
Assertion reglogexpbas N C + C 1 log C N log C = N

Proof

Step Hyp Ref Expression
1 simprl N C + C 1 C +
2 simpl N C + C 1 N
3 simpr N C + C 1 C + C 1
4 reglogexp C + N C + C 1 log C N log C = N log C log C
5 1 2 3 4 syl3anc N C + C 1 log C N log C = N log C log C
6 reglogbas C + C 1 log C log C = 1
7 6 adantl N C + C 1 log C log C = 1
8 7 oveq2d N C + C 1 N log C log C = N 1
9 zcn N N
10 9 adantr N C + C 1 N
11 10 mulid1d N C + C 1 N 1 = N
12 5 8 11 3eqtrd N C + C 1 log C N log C = N