Metamath Proof Explorer


Theorem reglogmul

Description: Multiplication law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbmul instead.

Ref Expression
Assertion reglogmul A + B + C + C 1 log A B log C = log A log C + log B log C

Proof

Step Hyp Ref Expression
1 relogmul A + B + log A B = log A + log B
2 1 3adant3 A + B + C + C 1 log A B = log A + log B
3 2 oveq1d A + B + C + C 1 log A B log C = log A + log B log C
4 relogcl A + log A
5 4 recnd A + log A
6 5 3ad2ant1 A + B + C + C 1 log A
7 relogcl B + log B
8 7 recnd B + log B
9 8 3ad2ant2 A + B + C + C 1 log B
10 relogcl C + log C
11 10 recnd C + log C
12 11 adantr C + C 1 log C
13 12 3ad2ant3 A + B + C + C 1 log C
14 logne0 C + C 1 log C 0
15 14 3ad2ant3 A + B + C + C 1 log C 0
16 6 9 13 15 divdird A + B + C + C 1 log A + log B log C = log A log C + log B log C
17 3 16 eqtrd A + B + C + C 1 log A B log C = log A log C + log B log C