| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
|
| 2 |
|
regr1lem.2 |
|
| 3 |
|
regr1lem.3 |
|
| 4 |
|
regr1lem.4 |
|
| 5 |
|
regr1lem.5 |
|
| 6 |
|
regr1lem.6 |
|
| 7 |
|
regr1lem.7 |
|
| 8 |
3
|
adantr |
|
| 9 |
6
|
adantr |
|
| 10 |
|
simpr |
|
| 11 |
|
regsep |
|
| 12 |
8 9 10 11
|
syl3anc |
|
| 13 |
7
|
ad2antrr |
|
| 14 |
2
|
ad3antrrr |
|
| 15 |
|
simplrl |
|
| 16 |
1
|
kqopn |
|
| 17 |
14 15 16
|
syl2anc |
|
| 18 |
|
toponuni |
|
| 19 |
14 18
|
syl |
|
| 20 |
19
|
difeq1d |
|
| 21 |
|
topontop |
|
| 22 |
14 21
|
syl |
|
| 23 |
|
elssuni |
|
| 24 |
15 23
|
syl |
|
| 25 |
|
eqid |
|
| 26 |
25
|
clscld |
|
| 27 |
22 24 26
|
syl2anc |
|
| 28 |
25
|
cldopn |
|
| 29 |
27 28
|
syl |
|
| 30 |
20 29
|
eqeltrd |
|
| 31 |
1
|
kqopn |
|
| 32 |
14 30 31
|
syl2anc |
|
| 33 |
|
simprrl |
|
| 34 |
33
|
adantr |
|
| 35 |
4
|
ad3antrrr |
|
| 36 |
1
|
kqfvima |
|
| 37 |
14 15 35 36
|
syl3anc |
|
| 38 |
34 37
|
mpbid |
|
| 39 |
5
|
ad3antrrr |
|
| 40 |
|
simprrr |
|
| 41 |
40
|
sseld |
|
| 42 |
41
|
con3dimp |
|
| 43 |
39 42
|
eldifd |
|
| 44 |
1
|
kqfvima |
|
| 45 |
14 30 39 44
|
syl3anc |
|
| 46 |
43 45
|
mpbid |
|
| 47 |
25
|
sscls |
|
| 48 |
22 24 47
|
syl2anc |
|
| 49 |
48
|
sscond |
|
| 50 |
|
imass2 |
|
| 51 |
|
sslin |
|
| 52 |
49 50 51
|
3syl |
|
| 53 |
1
|
kqdisj |
|
| 54 |
14 15 53
|
syl2anc |
|
| 55 |
|
sseq0 |
|
| 56 |
52 54 55
|
syl2anc |
|
| 57 |
|
eleq2 |
|
| 58 |
|
ineq1 |
|
| 59 |
58
|
eqeq1d |
|
| 60 |
57 59
|
3anbi13d |
|
| 61 |
|
eleq2 |
|
| 62 |
|
ineq2 |
|
| 63 |
62
|
eqeq1d |
|
| 64 |
61 63
|
3anbi23d |
|
| 65 |
60 64
|
rspc2ev |
|
| 66 |
17 32 38 46 56 65
|
syl113anc |
|
| 67 |
66
|
ex |
|
| 68 |
13 67
|
mt3d |
|
| 69 |
12 68
|
rexlimddv |
|
| 70 |
69
|
ex |
|