Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|
2 |
|
simplll |
|
3 |
|
simpllr |
|
4 |
|
simplrl |
|
5 |
|
simplrr |
|
6 |
|
simprl |
|
7 |
|
simprr |
|
8 |
1 2 3 4 5 6 7
|
regr1lem |
|
9 |
|
3ancoma |
|
10 |
|
incom |
|
11 |
10
|
eqeq1i |
|
12 |
11
|
3anbi3i |
|
13 |
9 12
|
bitri |
|
14 |
13
|
2rexbii |
|
15 |
|
rexcom |
|
16 |
14 15
|
bitri |
|
17 |
7 16
|
sylnib |
|
18 |
1 2 3 5 4 6 17
|
regr1lem |
|
19 |
8 18
|
impbid |
|
20 |
19
|
expr |
|
21 |
20
|
ralrimdva |
|
22 |
1
|
kqfeq |
|
23 |
|
elequ2 |
|
24 |
|
elequ2 |
|
25 |
23 24
|
bibi12d |
|
26 |
25
|
cbvralvw |
|
27 |
22 26
|
bitrdi |
|
28 |
27
|
3expb |
|
29 |
28
|
adantlr |
|
30 |
21 29
|
sylibrd |
|
31 |
30
|
necon1ad |
|
32 |
31
|
ralrimivva |
|
33 |
1
|
kqffn |
|
34 |
33
|
adantr |
|
35 |
|
neeq1 |
|
36 |
|
eleq1 |
|
37 |
36
|
3anbi1d |
|
38 |
37
|
2rexbidv |
|
39 |
35 38
|
imbi12d |
|
40 |
39
|
ralbidv |
|
41 |
40
|
ralrn |
|
42 |
|
neeq2 |
|
43 |
|
eleq1 |
|
44 |
43
|
3anbi2d |
|
45 |
44
|
2rexbidv |
|
46 |
42 45
|
imbi12d |
|
47 |
46
|
ralrn |
|
48 |
47
|
ralbidv |
|
49 |
41 48
|
bitrd |
|
50 |
34 49
|
syl |
|
51 |
32 50
|
mpbird |
|
52 |
1
|
kqtopon |
|
53 |
52
|
adantr |
|
54 |
|
ishaus2 |
|
55 |
53 54
|
syl |
|
56 |
51 55
|
mpbird |
|