| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
|
| 2 |
|
simplll |
|
| 3 |
|
simpllr |
|
| 4 |
|
simplrl |
|
| 5 |
|
simplrr |
|
| 6 |
|
simprl |
|
| 7 |
|
simprr |
|
| 8 |
1 2 3 4 5 6 7
|
regr1lem |
|
| 9 |
|
3ancoma |
|
| 10 |
|
incom |
|
| 11 |
10
|
eqeq1i |
|
| 12 |
11
|
3anbi3i |
|
| 13 |
9 12
|
bitri |
|
| 14 |
13
|
2rexbii |
|
| 15 |
|
rexcom |
|
| 16 |
14 15
|
bitri |
|
| 17 |
7 16
|
sylnib |
|
| 18 |
1 2 3 5 4 6 17
|
regr1lem |
|
| 19 |
8 18
|
impbid |
|
| 20 |
19
|
expr |
|
| 21 |
20
|
ralrimdva |
|
| 22 |
1
|
kqfeq |
|
| 23 |
|
elequ2 |
|
| 24 |
|
elequ2 |
|
| 25 |
23 24
|
bibi12d |
|
| 26 |
25
|
cbvralvw |
|
| 27 |
22 26
|
bitrdi |
|
| 28 |
27
|
3expb |
|
| 29 |
28
|
adantlr |
|
| 30 |
21 29
|
sylibrd |
|
| 31 |
30
|
necon1ad |
|
| 32 |
31
|
ralrimivva |
|
| 33 |
1
|
kqffn |
|
| 34 |
33
|
adantr |
|
| 35 |
|
neeq1 |
|
| 36 |
|
eleq1 |
|
| 37 |
36
|
3anbi1d |
|
| 38 |
37
|
2rexbidv |
|
| 39 |
35 38
|
imbi12d |
|
| 40 |
39
|
ralbidv |
|
| 41 |
40
|
ralrn |
|
| 42 |
|
neeq2 |
|
| 43 |
|
eleq1 |
|
| 44 |
43
|
3anbi2d |
|
| 45 |
44
|
2rexbidv |
|
| 46 |
42 45
|
imbi12d |
|
| 47 |
46
|
ralrn |
|
| 48 |
47
|
ralbidv |
|
| 49 |
41 48
|
bitrd |
|
| 50 |
34 49
|
syl |
|
| 51 |
32 50
|
mpbird |
|
| 52 |
1
|
kqtopon |
|
| 53 |
52
|
adantr |
|
| 54 |
|
ishaus2 |
|
| 55 |
53 54
|
syl |
|
| 56 |
51 55
|
mpbird |
|