Metamath Proof Explorer


Theorem regsep

Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion regsep J Reg U J A U x J A x cls J x U

Proof

Step Hyp Ref Expression
1 isreg J Reg J Top y J z y x J z x cls J x y
2 sseq2 y = U cls J x y cls J x U
3 2 anbi2d y = U z x cls J x y z x cls J x U
4 3 rexbidv y = U x J z x cls J x y x J z x cls J x U
5 4 raleqbi1dv y = U z y x J z x cls J x y z U x J z x cls J x U
6 5 rspccv y J z y x J z x cls J x y U J z U x J z x cls J x U
7 1 6 simplbiim J Reg U J z U x J z x cls J x U
8 eleq1 z = A z x A x
9 8 anbi1d z = A z x cls J x U A x cls J x U
10 9 rexbidv z = A x J z x cls J x U x J A x cls J x U
11 10 rspccv z U x J z x cls J x U A U x J A x cls J x U
12 7 11 syl6 J Reg U J A U x J A x cls J x U
13 12 3imp J Reg U J A U x J A x cls J x U