Step |
Hyp |
Ref |
Expression |
1 |
|
t1sep.1 |
|
2 |
|
regtop |
|
3 |
2
|
ad2antrr |
|
4 |
|
elssuni |
|
5 |
4 1
|
sseqtrrdi |
|
6 |
5
|
ad2antrl |
|
7 |
1
|
clscld |
|
8 |
3 6 7
|
syl2anc |
|
9 |
1
|
cldopn |
|
10 |
8 9
|
syl |
|
11 |
|
simprrr |
|
12 |
1
|
clsss3 |
|
13 |
3 6 12
|
syl2anc |
|
14 |
|
simplr1 |
|
15 |
1
|
cldss |
|
16 |
14 15
|
syl |
|
17 |
|
ssconb |
|
18 |
13 16 17
|
syl2anc |
|
19 |
11 18
|
mpbid |
|
20 |
|
simprrl |
|
21 |
1
|
sscls |
|
22 |
3 6 21
|
syl2anc |
|
23 |
|
sslin |
|
24 |
22 23
|
syl |
|
25 |
|
disjdifr |
|
26 |
|
sseq0 |
|
27 |
24 25 26
|
sylancl |
|
28 |
|
sseq2 |
|
29 |
|
ineq1 |
|
30 |
29
|
eqeq1d |
|
31 |
28 30
|
3anbi13d |
|
32 |
31
|
rspcev |
|
33 |
10 19 20 27 32
|
syl13anc |
|
34 |
|
simpl |
|
35 |
|
simpr1 |
|
36 |
1
|
cldopn |
|
37 |
35 36
|
syl |
|
38 |
|
simpr2 |
|
39 |
|
simpr3 |
|
40 |
38 39
|
eldifd |
|
41 |
|
regsep |
|
42 |
34 37 40 41
|
syl3anc |
|
43 |
33 42
|
reximddv |
|
44 |
|
rexcom |
|
45 |
43 44
|
sylib |
|