| Step |
Hyp |
Ref |
Expression |
| 1 |
|
t1sep.1 |
|
| 2 |
|
regtop |
|
| 3 |
2
|
ad2antrr |
|
| 4 |
|
elssuni |
|
| 5 |
4 1
|
sseqtrrdi |
|
| 6 |
5
|
ad2antrl |
|
| 7 |
1
|
clscld |
|
| 8 |
3 6 7
|
syl2anc |
|
| 9 |
1
|
cldopn |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simprrr |
|
| 12 |
1
|
clsss3 |
|
| 13 |
3 6 12
|
syl2anc |
|
| 14 |
|
simplr1 |
|
| 15 |
1
|
cldss |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
ssconb |
|
| 18 |
13 16 17
|
syl2anc |
|
| 19 |
11 18
|
mpbid |
|
| 20 |
|
simprrl |
|
| 21 |
1
|
sscls |
|
| 22 |
3 6 21
|
syl2anc |
|
| 23 |
|
sslin |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
disjdifr |
|
| 26 |
|
sseq0 |
|
| 27 |
24 25 26
|
sylancl |
|
| 28 |
|
sseq2 |
|
| 29 |
|
ineq1 |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
28 30
|
3anbi13d |
|
| 32 |
31
|
rspcev |
|
| 33 |
10 19 20 27 32
|
syl13anc |
|
| 34 |
|
simpl |
|
| 35 |
|
simpr1 |
|
| 36 |
1
|
cldopn |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
simpr2 |
|
| 39 |
|
simpr3 |
|
| 40 |
38 39
|
eldifd |
|
| 41 |
|
regsep |
|
| 42 |
34 37 40 41
|
syl3anc |
|
| 43 |
33 42
|
reximddv |
|
| 44 |
|
rexcom |
|
| 45 |
43 44
|
sylib |
|