Metamath Proof Explorer


Theorem regsumfsum

Description: Relate a group sum on ` ( CCfld |``s RR ) ` to a finite sum on the reals. Cf. gsumfsum . (Contributed by Thierry Arnoux, 7-Sep-2018)

Ref Expression
Hypotheses regsumfsum.1 φ A Fin
regsumfsum.2 φ k A B
Assertion regsumfsum φ fld 𝑠 k A B = k A B

Proof

Step Hyp Ref Expression
1 regsumfsum.1 φ A Fin
2 regsumfsum.2 φ k A B
3 cnfldbas = Base fld
4 cnfldadd + = + fld
5 eqid fld 𝑠 = fld 𝑠
6 cnfldex fld V
7 6 a1i φ fld V
8 ax-resscn
9 8 a1i φ
10 2 fmpttd φ k A B : A
11 0red φ 0
12 simpr φ x x
13 12 addid2d φ x 0 + x = x
14 12 addid1d φ x x + 0 = x
15 13 14 jca φ x 0 + x = x x + 0 = x
16 3 4 5 7 1 9 10 11 15 gsumress φ fld k A B = fld 𝑠 k A B
17 2 recnd φ k A B
18 1 17 gsumfsum φ fld k A B = k A B
19 16 18 eqtr3d φ fld 𝑠 k A B = k A B