Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|
2 |
|
cnfld0 |
|
3 |
|
cnring |
|
4 |
|
ringcmn |
|
5 |
3 4
|
mp1i |
|
6 |
|
simp3 |
|
7 |
|
simp1 |
|
8 |
|
ax-resscn |
|
9 |
|
fss |
|
10 |
7 8 9
|
sylancl |
|
11 |
|
ssidd |
|
12 |
|
simp2 |
|
13 |
1 2 5 6 10 11 12
|
gsumres |
|
14 |
|
cnfldadd |
|
15 |
|
df-refld |
|
16 |
8
|
a1i |
|
17 |
|
0red |
|
18 |
|
simpr |
|
19 |
18
|
addid2d |
|
20 |
18
|
addid1d |
|
21 |
19 20
|
jca |
|
22 |
1 14 15 5 6 16 7 17 21
|
gsumress |
|
23 |
13 22
|
eqtr2d |
|
24 |
|
suppssdm |
|
25 |
24 7
|
fssdm |
|
26 |
7 25
|
feqresmpt |
|
27 |
26
|
oveq2d |
|
28 |
12
|
fsuppimpd |
|
29 |
|
simpl1 |
|
30 |
25
|
sselda |
|
31 |
29 30
|
ffvelrnd |
|
32 |
8 31
|
sselid |
|
33 |
28 32
|
gsumfsum |
|
34 |
23 27 33
|
3eqtrd |
|