Metamath Proof Explorer


Theorem rei

Description: The real part of _i . (Contributed by Scott Fenton, 9-Jun-2006)

Ref Expression
Assertion rei i = 0

Proof

Step Hyp Ref Expression
1 ax-icn i
2 ax-1cn 1
3 1 2 mulcli i 1
4 3 addid2i 0 + i 1 = i 1
5 4 fveq2i 0 + i 1 = i 1
6 0re 0
7 1re 1
8 crre 0 1 0 + i 1 = 0
9 6 7 8 mp2an 0 + i 1 = 0
10 1 mulid1i i 1 = i
11 10 fveq2i i 1 = i
12 5 9 11 3eqtr3ri i = 0