Metamath Proof Explorer


Theorem reim

Description: The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion reim A A = i A

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl i A i A
3 1 2 mpan A i A
4 imval i A i A = i A i
5 3 4 syl A i A = i A i
6 ine0 i 0
7 divcan3 A i i 0 i A i = A
8 1 6 7 mp3an23 A i A i = A
9 8 fveq2d A i A i = A
10 5 9 eqtr2d A A = i A