Metamath Proof Explorer


Theorem relbrcnv

Description: When R is a relation, the sethood assumptions on brcnv can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypothesis relbrcnv.1 Rel R
Assertion relbrcnv A R -1 B B R A

Proof

Step Hyp Ref Expression
1 relbrcnv.1 Rel R
2 relbrcnvg Rel R A R -1 B B R A
3 1 2 ax-mp A R -1 B B R A