Metamath Proof Explorer


Theorem relbrcnvg

Description: When R is a relation, the sethood assumptions on brcnv can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion relbrcnvg Rel R A R -1 B B R A

Proof

Step Hyp Ref Expression
1 relcnv Rel R -1
2 1 brrelex12i A R -1 B A V B V
3 2 a1i Rel R A R -1 B A V B V
4 brrelex12 Rel R B R A B V A V
5 4 ancomd Rel R B R A A V B V
6 5 ex Rel R B R A A V B V
7 brcnvg A V B V A R -1 B B R A
8 7 a1i Rel R A V B V A R -1 B B R A
9 3 6 8 pm5.21ndd Rel R A R -1 B B R A