Step |
Hyp |
Ref |
Expression |
1 |
|
relcmpcmet.1 |
|
2 |
|
relcmpcmet.2 |
|
3 |
|
relcmpcmet.3 |
|
4 |
|
relcmpcmet.4 |
|
5 |
|
metxmet |
|
6 |
2 5
|
syl |
|
7 |
6
|
adantr |
|
8 |
|
simpr |
|
9 |
3
|
adantr |
|
10 |
|
cfil3i |
|
11 |
7 8 9 10
|
syl3anc |
|
12 |
6
|
ad2antrr |
|
13 |
1
|
mopntopon |
|
14 |
12 13
|
syl |
|
15 |
|
cfilfil |
|
16 |
6 15
|
sylan |
|
17 |
16
|
adantr |
|
18 |
|
simprr |
|
19 |
|
topontop |
|
20 |
14 19
|
syl |
|
21 |
|
simprl |
|
22 |
3
|
rpxrd |
|
23 |
22
|
ad2antrr |
|
24 |
|
blssm |
|
25 |
12 21 23 24
|
syl3anc |
|
26 |
|
toponuni |
|
27 |
14 26
|
syl |
|
28 |
25 27
|
sseqtrd |
|
29 |
|
eqid |
|
30 |
29
|
clsss3 |
|
31 |
20 28 30
|
syl2anc |
|
32 |
31 27
|
sseqtrrd |
|
33 |
29
|
sscls |
|
34 |
20 28 33
|
syl2anc |
|
35 |
|
filss |
|
36 |
17 18 32 34 35
|
syl13anc |
|
37 |
|
fclsrest |
|
38 |
14 17 36 37
|
syl3anc |
|
39 |
|
inss1 |
|
40 |
|
eqid |
|
41 |
1 40
|
cfilfcls |
|
42 |
41
|
ad2antlr |
|
43 |
39 42
|
sseqtrid |
|
44 |
38 43
|
eqsstrd |
|
45 |
4
|
ad2ant2r |
|
46 |
|
filfbas |
|
47 |
17 46
|
syl |
|
48 |
|
fbncp |
|
49 |
47 36 48
|
syl2anc |
|
50 |
|
trfil3 |
|
51 |
17 32 50
|
syl2anc |
|
52 |
49 51
|
mpbird |
|
53 |
|
resttopon |
|
54 |
14 32 53
|
syl2anc |
|
55 |
|
toponuni |
|
56 |
54 55
|
syl |
|
57 |
56
|
fveq2d |
|
58 |
52 57
|
eleqtrd |
|
59 |
|
eqid |
|
60 |
59
|
fclscmpi |
|
61 |
45 58 60
|
syl2anc |
|
62 |
|
ssn0 |
|
63 |
44 61 62
|
syl2anc |
|
64 |
11 63
|
rexlimddv |
|
65 |
64
|
ralrimiva |
|
66 |
1
|
iscmet |
|
67 |
2 65 66
|
sylanbrc |
|