Metamath Proof Explorer


Theorem relcmpcmet

Description: If D is a metric space such that all the balls of some fixed size are relatively compact, then D is complete. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses relcmpcmet.1 J = MetOpen D
relcmpcmet.2 φ D Met X
relcmpcmet.3 φ R +
relcmpcmet.4 φ x X J 𝑡 cls J x ball D R Comp
Assertion relcmpcmet φ D CMet X

Proof

Step Hyp Ref Expression
1 relcmpcmet.1 J = MetOpen D
2 relcmpcmet.2 φ D Met X
3 relcmpcmet.3 φ R +
4 relcmpcmet.4 φ x X J 𝑡 cls J x ball D R Comp
5 metxmet D Met X D ∞Met X
6 2 5 syl φ D ∞Met X
7 6 adantr φ f CauFil D D ∞Met X
8 simpr φ f CauFil D f CauFil D
9 3 adantr φ f CauFil D R +
10 cfil3i D ∞Met X f CauFil D R + x X x ball D R f
11 7 8 9 10 syl3anc φ f CauFil D x X x ball D R f
12 6 ad2antrr φ f CauFil D x X x ball D R f D ∞Met X
13 1 mopntopon D ∞Met X J TopOn X
14 12 13 syl φ f CauFil D x X x ball D R f J TopOn X
15 cfilfil D ∞Met X f CauFil D f Fil X
16 6 15 sylan φ f CauFil D f Fil X
17 16 adantr φ f CauFil D x X x ball D R f f Fil X
18 simprr φ f CauFil D x X x ball D R f x ball D R f
19 topontop J TopOn X J Top
20 14 19 syl φ f CauFil D x X x ball D R f J Top
21 simprl φ f CauFil D x X x ball D R f x X
22 3 rpxrd φ R *
23 22 ad2antrr φ f CauFil D x X x ball D R f R *
24 blssm D ∞Met X x X R * x ball D R X
25 12 21 23 24 syl3anc φ f CauFil D x X x ball D R f x ball D R X
26 toponuni J TopOn X X = J
27 14 26 syl φ f CauFil D x X x ball D R f X = J
28 25 27 sseqtrd φ f CauFil D x X x ball D R f x ball D R J
29 eqid J = J
30 29 clsss3 J Top x ball D R J cls J x ball D R J
31 20 28 30 syl2anc φ f CauFil D x X x ball D R f cls J x ball D R J
32 31 27 sseqtrrd φ f CauFil D x X x ball D R f cls J x ball D R X
33 29 sscls J Top x ball D R J x ball D R cls J x ball D R
34 20 28 33 syl2anc φ f CauFil D x X x ball D R f x ball D R cls J x ball D R
35 filss f Fil X x ball D R f cls J x ball D R X x ball D R cls J x ball D R cls J x ball D R f
36 17 18 32 34 35 syl13anc φ f CauFil D x X x ball D R f cls J x ball D R f
37 fclsrest J TopOn X f Fil X cls J x ball D R f J 𝑡 cls J x ball D R fClus f 𝑡 cls J x ball D R = J fClus f cls J x ball D R
38 14 17 36 37 syl3anc φ f CauFil D x X x ball D R f J 𝑡 cls J x ball D R fClus f 𝑡 cls J x ball D R = J fClus f cls J x ball D R
39 inss1 J fClus f cls J x ball D R J fClus f
40 eqid dom dom D = dom dom D
41 1 40 cfilfcls f CauFil D J fClus f = J fLim f
42 41 ad2antlr φ f CauFil D x X x ball D R f J fClus f = J fLim f
43 39 42 sseqtrid φ f CauFil D x X x ball D R f J fClus f cls J x ball D R J fLim f
44 38 43 eqsstrd φ f CauFil D x X x ball D R f J 𝑡 cls J x ball D R fClus f 𝑡 cls J x ball D R J fLim f
45 4 ad2ant2r φ f CauFil D x X x ball D R f J 𝑡 cls J x ball D R Comp
46 filfbas f Fil X f fBas X
47 17 46 syl φ f CauFil D x X x ball D R f f fBas X
48 fbncp f fBas X cls J x ball D R f ¬ X cls J x ball D R f
49 47 36 48 syl2anc φ f CauFil D x X x ball D R f ¬ X cls J x ball D R f
50 trfil3 f Fil X cls J x ball D R X f 𝑡 cls J x ball D R Fil cls J x ball D R ¬ X cls J x ball D R f
51 17 32 50 syl2anc φ f CauFil D x X x ball D R f f 𝑡 cls J x ball D R Fil cls J x ball D R ¬ X cls J x ball D R f
52 49 51 mpbird φ f CauFil D x X x ball D R f f 𝑡 cls J x ball D R Fil cls J x ball D R
53 resttopon J TopOn X cls J x ball D R X J 𝑡 cls J x ball D R TopOn cls J x ball D R
54 14 32 53 syl2anc φ f CauFil D x X x ball D R f J 𝑡 cls J x ball D R TopOn cls J x ball D R
55 toponuni J 𝑡 cls J x ball D R TopOn cls J x ball D R cls J x ball D R = J 𝑡 cls J x ball D R
56 54 55 syl φ f CauFil D x X x ball D R f cls J x ball D R = J 𝑡 cls J x ball D R
57 56 fveq2d φ f CauFil D x X x ball D R f Fil cls J x ball D R = Fil J 𝑡 cls J x ball D R
58 52 57 eleqtrd φ f CauFil D x X x ball D R f f 𝑡 cls J x ball D R Fil J 𝑡 cls J x ball D R
59 eqid J 𝑡 cls J x ball D R = J 𝑡 cls J x ball D R
60 59 fclscmpi J 𝑡 cls J x ball D R Comp f 𝑡 cls J x ball D R Fil J 𝑡 cls J x ball D R J 𝑡 cls J x ball D R fClus f 𝑡 cls J x ball D R
61 45 58 60 syl2anc φ f CauFil D x X x ball D R f J 𝑡 cls J x ball D R fClus f 𝑡 cls J x ball D R
62 ssn0 J 𝑡 cls J x ball D R fClus f 𝑡 cls J x ball D R J fLim f J 𝑡 cls J x ball D R fClus f 𝑡 cls J x ball D R J fLim f
63 44 61 62 syl2anc φ f CauFil D x X x ball D R f J fLim f
64 11 63 rexlimddv φ f CauFil D J fLim f
65 64 ralrimiva φ f CauFil D J fLim f
66 1 iscmet D CMet X D Met X f CauFil D J fLim f
67 2 65 66 sylanbrc φ D CMet X