Metamath Proof Explorer


Theorem relcnvexb

Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007)

Ref Expression
Assertion relcnvexb Rel R R V R -1 V

Proof

Step Hyp Ref Expression
1 cnvexg R V R -1 V
2 dfrel2 Rel R R -1 -1 = R
3 cnvexg R -1 V R -1 -1 V
4 eleq1 R -1 -1 = R R -1 -1 V R V
5 3 4 syl5ib R -1 -1 = R R -1 V R V
6 2 5 sylbi Rel R R -1 V R V
7 1 6 impbid2 Rel R R V R -1 V