Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Relations and functions (cont.)
relcnvexb
Next ⟩
f1oexrnex
Metamath Proof Explorer
Ascii
Unicode
Theorem
relcnvexb
Description:
A relation is a set iff its converse is a set.
(Contributed by
FL
, 3-Mar-2007)
Ref
Expression
Assertion
relcnvexb
⊢
Rel
⁡
R
→
R
∈
V
↔
R
-1
∈
V
Proof
Step
Hyp
Ref
Expression
1
cnvexg
⊢
R
∈
V
→
R
-1
∈
V
2
dfrel2
⊢
Rel
⁡
R
↔
R
-1
-1
=
R
3
cnvexg
⊢
R
-1
∈
V
→
R
-1
-1
∈
V
4
eleq1
⊢
R
-1
-1
=
R
→
R
-1
-1
∈
V
↔
R
∈
V
5
3
4
syl5ib
⊢
R
-1
-1
=
R
→
R
-1
∈
V
→
R
∈
V
6
2
5
sylbi
⊢
Rel
⁡
R
→
R
-1
∈
V
→
R
∈
V
7
1
6
impbid2
⊢
Rel
⁡
R
→
R
∈
V
↔
R
-1
∈
V