Metamath Proof Explorer


Theorem relcnvtrg

Description: General form of relcnvtr . (Contributed by Peter Mazsa, 17-Oct-2023)

Ref Expression
Assertion relcnvtrg Rel R Rel S Rel T R S T S -1 R -1 T -1

Proof

Step Hyp Ref Expression
1 cnvco R S -1 = S -1 R -1
2 cnvss R S T R S -1 T -1
3 1 2 eqsstrrid R S T S -1 R -1 T -1
4 cnvco S -1 R -1 -1 = R -1 -1 S -1 -1
5 cnvss S -1 R -1 T -1 S -1 R -1 -1 T -1 -1
6 sseq1 S -1 R -1 -1 = R -1 -1 S -1 -1 S -1 R -1 -1 T -1 -1 R -1 -1 S -1 -1 T -1 -1
7 dfrel2 Rel R R -1 -1 = R
8 7 biimpi Rel R R -1 -1 = R
9 8 3ad2ant1 Rel R Rel S Rel T R -1 -1 = R
10 dfrel2 Rel S S -1 -1 = S
11 10 biimpi Rel S S -1 -1 = S
12 11 3ad2ant2 Rel R Rel S Rel T S -1 -1 = S
13 9 12 coeq12d Rel R Rel S Rel T R -1 -1 S -1 -1 = R S
14 dfrel2 Rel T T -1 -1 = T
15 14 biimpi Rel T T -1 -1 = T
16 15 3ad2ant3 Rel R Rel S Rel T T -1 -1 = T
17 13 16 sseq12d Rel R Rel S Rel T R -1 -1 S -1 -1 T -1 -1 R S T
18 17 biimpcd R -1 -1 S -1 -1 T -1 -1 Rel R Rel S Rel T R S T
19 6 18 syl6bi S -1 R -1 -1 = R -1 -1 S -1 -1 S -1 R -1 -1 T -1 -1 Rel R Rel S Rel T R S T
20 4 5 19 mpsyl S -1 R -1 T -1 Rel R Rel S Rel T R S T
21 20 com12 Rel R Rel S Rel T S -1 R -1 T -1 R S T
22 3 21 impbid2 Rel R Rel S Rel T R S T S -1 R -1 T -1