Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
reldif
Next ⟩
reliun
Metamath Proof Explorer
Ascii
Unicode
Theorem
reldif
Description:
A difference cutting down a relation is a relation.
(Contributed by
NM
, 31-Mar-1998)
Ref
Expression
Assertion
reldif
⊢
Rel
⁡
A
→
Rel
⁡
A
∖
B
Proof
Step
Hyp
Ref
Expression
1
difss
⊢
A
∖
B
⊆
A
2
relss
⊢
A
∖
B
⊆
A
→
Rel
⁡
A
→
Rel
⁡
A
∖
B
3
1
2
ax-mp
⊢
Rel
⁡
A
→
Rel
⁡
A
∖
B