Metamath Proof Explorer


Theorem reldisj

Description: Two ways of saying that two classes are disjoint, using the complement of B relative to a universe C . (Contributed by NM, 15-Feb-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion reldisj A C A B = A C B

Proof

Step Hyp Ref Expression
1 dfss2 A C x x A x C
2 eleq1w x = y x A y A
3 eleq1w x = y x C y C
4 2 3 imbi12d x = y x A x C y A y C
5 4 spw x x A x C x A x C
6 pm5.44 x A x C x A ¬ x B x A x C ¬ x B
7 eldif x C B x C ¬ x B
8 7 imbi2i x A x C B x A x C ¬ x B
9 6 8 bitr4di x A x C x A ¬ x B x A x C B
10 5 9 syl x x A x C x A ¬ x B x A x C B
11 1 10 sylbi A C x A ¬ x B x A x C B
12 11 albidv A C x x A ¬ x B x x A x C B
13 disj1 A B = x x A ¬ x B
14 dfss2 A C B x x A x C B
15 12 13 14 3bitr4g A C A B = A C B