Metamath Proof Explorer


Theorem reldisjOLD

Description: Obsolete version of reldisj as of 28-Jun-2024. (Contributed by NM, 15-Feb-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion reldisjOLD A C A B = A C B

Proof

Step Hyp Ref Expression
1 dfss2 A C x x A x C
2 pm5.44 x A x C x A ¬ x B x A x C ¬ x B
3 eldif x C B x C ¬ x B
4 3 imbi2i x A x C B x A x C ¬ x B
5 2 4 bitr4di x A x C x A ¬ x B x A x C B
6 5 sps x x A x C x A ¬ x B x A x C B
7 1 6 sylbi A C x A ¬ x B x A x C B
8 7 albidv A C x x A ¬ x B x x A x C B
9 disj1 A B = x x A ¬ x B
10 dfss2 A C B x x A x C B
11 8 9 10 3bitr4g A C A B = A C B