Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
First and second members of an ordered pair
reldm
Next ⟩
releldmdifi
Metamath Proof Explorer
Ascii
Unicode
Theorem
reldm
Description:
An expression for the domain of a relation.
(Contributed by
NM
, 22-Sep-2013)
Ref
Expression
Assertion
reldm
⊢
Rel
⁡
A
→
dom
⁡
A
=
ran
⁡
x
∈
A
⟼
1
st
⁡
x
Proof
Step
Hyp
Ref
Expression
1
releldm2
⊢
Rel
⁡
A
→
y
∈
dom
⁡
A
↔
∃
z
∈
A
1
st
⁡
z
=
y
2
fvex
⊢
1
st
⁡
x
∈
V
3
eqid
⊢
x
∈
A
⟼
1
st
⁡
x
=
x
∈
A
⟼
1
st
⁡
x
4
2
3
fnmpti
⊢
x
∈
A
⟼
1
st
⁡
x
Fn
A
5
fvelrnb
⊢
x
∈
A
⟼
1
st
⁡
x
Fn
A
→
y
∈
ran
⁡
x
∈
A
⟼
1
st
⁡
x
↔
∃
z
∈
A
x
∈
A
⟼
1
st
⁡
x
⁡
z
=
y
6
4
5
ax-mp
⊢
y
∈
ran
⁡
x
∈
A
⟼
1
st
⁡
x
↔
∃
z
∈
A
x
∈
A
⟼
1
st
⁡
x
⁡
z
=
y
7
fveq2
⊢
x
=
z
→
1
st
⁡
x
=
1
st
⁡
z
8
fvex
⊢
1
st
⁡
z
∈
V
9
7
3
8
fvmpt
⊢
z
∈
A
→
x
∈
A
⟼
1
st
⁡
x
⁡
z
=
1
st
⁡
z
10
9
eqeq1d
⊢
z
∈
A
→
x
∈
A
⟼
1
st
⁡
x
⁡
z
=
y
↔
1
st
⁡
z
=
y
11
10
rexbiia
⊢
∃
z
∈
A
x
∈
A
⟼
1
st
⁡
x
⁡
z
=
y
↔
∃
z
∈
A
1
st
⁡
z
=
y
12
11
a1i
⊢
Rel
⁡
A
→
∃
z
∈
A
x
∈
A
⟼
1
st
⁡
x
⁡
z
=
y
↔
∃
z
∈
A
1
st
⁡
z
=
y
13
6
12
bitr2id
⊢
Rel
⁡
A
→
∃
z
∈
A
1
st
⁡
z
=
y
↔
y
∈
ran
⁡
x
∈
A
⟼
1
st
⁡
x
14
1
13
bitrd
⊢
Rel
⁡
A
→
y
∈
dom
⁡
A
↔
y
∈
ran
⁡
x
∈
A
⟼
1
st
⁡
x
15
14
eqrdv
⊢
Rel
⁡
A
→
dom
⁡
A
=
ran
⁡
x
∈
A
⟼
1
st
⁡
x