Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
reldm0
Next ⟩
dmxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
reldm0
Description:
A relation is empty iff its domain is empty.
(Contributed by
NM
, 15-Sep-2004)
Ref
Expression
Assertion
reldm0
⊢
Rel
⁡
A
→
A
=
∅
↔
dom
⁡
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
rel0
⊢
Rel
⁡
∅
2
eqrel
⊢
Rel
⁡
A
∧
Rel
⁡
∅
→
A
=
∅
↔
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
∅
3
1
2
mpan2
⊢
Rel
⁡
A
→
A
=
∅
↔
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
∅
4
eq0
⊢
dom
⁡
A
=
∅
↔
∀
x
¬
x
∈
dom
⁡
A
5
alnex
⊢
∀
y
¬
x
y
∈
A
↔
¬
∃
y
x
y
∈
A
6
vex
⊢
x
∈
V
7
6
eldm2
⊢
x
∈
dom
⁡
A
↔
∃
y
x
y
∈
A
8
5
7
xchbinxr
⊢
∀
y
¬
x
y
∈
A
↔
¬
x
∈
dom
⁡
A
9
noel
⊢
¬
x
y
∈
∅
10
9
nbn
⊢
¬
x
y
∈
A
↔
x
y
∈
A
↔
x
y
∈
∅
11
10
albii
⊢
∀
y
¬
x
y
∈
A
↔
∀
y
x
y
∈
A
↔
x
y
∈
∅
12
8
11
bitr3i
⊢
¬
x
∈
dom
⁡
A
↔
∀
y
x
y
∈
A
↔
x
y
∈
∅
13
12
albii
⊢
∀
x
¬
x
∈
dom
⁡
A
↔
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
∅
14
4
13
bitr2i
⊢
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
∅
↔
dom
⁡
A
=
∅
15
3
14
bitrdi
⊢
Rel
⁡
A
→
A
=
∅
↔
dom
⁡
A
=
∅