Metamath Proof Explorer


Theorem reldmdprd

Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016) (Proof shortened by AV, 11-Jul-2019)

Ref Expression
Assertion reldmdprd Rel dom DProd

Proof

Step Hyp Ref Expression
1 df-dprd DProd = g Grp , s h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g ran f h x dom s s x | finSupp 0 g h g f
2 1 reldmmpo Rel dom DProd