Metamath Proof Explorer


Theorem reldmdsmm

Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Assertion reldmdsmm Rel dom m

Proof

Step Hyp Ref Expression
1 df-dsmm m = s V , r V s 𝑠 r 𝑠 f x dom r Base r x | x dom r | f x 0 r x Fin
2 1 reldmmpo Rel dom m