Metamath Proof Explorer


Theorem reldmevls

Description: Well-behaved binary operation property of evalSub . (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Assertion reldmevls Rel dom evalSub

Proof

Step Hyp Ref Expression
1 df-evls evalSub = i V , s CRing Base s / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
2 1 reldmmpo Rel dom evalSub