Metamath Proof Explorer


Theorem reldmghm

Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion reldmghm Rel dom GrpHom

Proof

Step Hyp Ref Expression
1 df-ghm GrpHom = s Grp , t Grp g | [˙Base s / w]˙ g : w Base t x w y w g x + s y = g x + t g y
2 1 reldmmpo Rel dom GrpHom