Database
BASIC ALGEBRAIC STRUCTURES
Groups
Elementary theory of group homomorphisms
reldmghm
Next ⟩
isghm
Metamath Proof Explorer
Ascii
Unicode
Theorem
reldmghm
Description:
Lemma for group homomorphisms.
(Contributed by
Stefan O'Rear
, 31-Dec-2014)
Ref
Expression
Assertion
reldmghm
⊢
Rel
⁡
dom
⁡
GrpHom
Proof
Step
Hyp
Ref
Expression
1
df-ghm
⊢
GrpHom
=
s
∈
Grp
,
t
∈
Grp
⟼
g
|
[
˙
Base
s
/
w
]
˙
g
:
w
⟶
Base
t
∧
∀
x
∈
w
∀
y
∈
w
g
⁡
x
+
s
y
=
g
⁡
x
+
t
g
⁡
y
2
1
reldmmpo
⊢
Rel
⁡
dom
⁡
GrpHom